Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 2113-2136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476282

RESUMO

Introduction: Poor interfacial bonding between the fibers and resin matrix in fiber-reinforced composites (FRCs) is a significant drawback of the composites. To enhance the mechanical properties of FRC, fibers were modified by depositing SiO2 nanofilms via the atomic layer deposition (ALD) technique. This study aims to evaluate the effect of ALD treatment of the fibers on the mechanical properties of the FRCs. Methods: The quartz fibers were modified by depositing different cycles (50, 100, 200, and 400) of SiO2 nanofilms via the ALD technique and FRCs were proposed from the modified fibers. The morphologies, surface characterizations of nanofilms, mechanical properties, and cytocompatibility of FRCs were systematically investigated. Moreover, the shear bond strength (SBS) of FRCs to human enamel was also evaluated. Results: The SEM and SE results showed that the ALD-deposited SiO2 nanofilms have good conformality and homogeneity. According to the results of FTIR and TGA, SiO2 nanofilms and quartz fiber surfaces had good chemical combinations. Three-point bending tests with FRCs showed that the deposited SiO2 nanofilms effectively improved FRCs' strength and Group D underwent 100 deposition cycles and had the highest flexural strength before and after aging. Furthermore, the strength of the FRCs demonstrated a crescendo-decrescendo tendency with SiO2 nanofilm thickness increasing. The SBS results also showed that Group D had outstanding performance. Moreover, the results of cytotoxicity experiments such as cck8, LDH and Elisa, etc., showed that the FRCs have good cytocompatibility. Conclusion: Changing the number of ALD reaction cycles affects the mechanical properties of FRCs, which may be related to the stress relaxation and fracture between SiO2 nanofilm layers and the built-up internal stresses in the nanofilms. Eventually, the SiO2 nanofilms could enhance the FRCs' mechanical properties and performance to enamel by improving the interfacial bonding strength, and have good cytocompatibility.


Assuntos
Quartzo , Dióxido de Silício , Humanos , Teste de Materiais , Resinas Compostas/química , Resistência ao Cisalhamento , Propriedades de Superfície
2.
STOMATOLOGY ; (12): 97-103, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-979270

RESUMO

Objective@#To compare and investigate the physicochemical characteristics and antibacterial effect of ZnO nanofilms prepared by atomic layer deposition(ALD) at different deposition cycles.@*Methods@#According to different ALD cycles, four groups were set up (control group, 300, 600 and 1 200 cycles group). Using DEZn and water as precursors, ZnO nanofilms were prepared by ALD on the surface of pure titanium specimens. Surface morphology of the films was observed by scanning electron microscope (SEM); the element composition and crystal type of the films were observed by energy dispersive spectrometer (EDS) and X-Ray Diffraction (XRD); the hydrophilicity and thickness of the films were detected by water contact angle detector and ellipsometer. The cytotoxicity of the films was evaluated by CCK-8 assay. The antibacterial effect against S. aureus in vitro of the films was evaluated by optical density method.@*Results@#The surface morphology of the films was uniform and compact as shown through SEM. The grain size increased with the increase of the number of ALD cycles. EDS results showed that the films were mainly composed of Zn and O elements. XRD results confirmed that the composition of the films was ZnO. Results of water contact angle showed that the films were hydrophobic. The thickness of the films was nanoscale and there was a linear relationship between the thickness and ALD cycles. All experimental groups showed no cytotoxicity. The 1 200 cycles group showed the highest antibacterial rate of 65.9% and 52.3% at 24 and 48 hours respectively, which was the best among all experimental groups. @*Conclusion@#The ZnO nanofilms prepared by ALD at different cycles on pure titanium surface are uniform and compact. Thickness of the films increases with the increase of ALD cycles. The films have good biocompatibility and anti-S. aureus effect in vitro. The 1 200 cycles group has the best antibacterial effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...